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Abstract We consider the problem of learning in repeated general-sum matrix games when
a learning algorithm can observe the actions but not the payoffs of its associates. Due to the
non-stationarity of the environment caused by learning associates in these games, most state-
of-the-art algorithms perform poorly in some important repeated games due to an inability
to make profitable compromises. To make these compromises, an agent must effectively
balance competing objectives, including bounding losses, playing optimally with respect
to current beliefs, and taking calculated, but profitable, risks. In this paper, we present, dis-
cuss, and analyze M-Qubed, a reinforcement learning algorithm designed to overcome these
deficiencies by encoding and balancing best-response, cautious, and optimistic learning bi-
ases. We show that M-Qubed learns to make profitable compromises across a wide-range
of repeated matrix games played with many kinds of learners. Specifically, we prove that
M-Qubed’s average payoffs meet or exceed its maximin value in the limit. Additionally, we
show that, in two-player games, M-Qubed’s average payoffs approach the value of the Nash
bargaining solution in self play. Furthermore, it performs very well when associating with
other learners, as evidenced by its robust behavior in round-robin and evolutionary tourna-
ments of two-player games. These results demonstrate that an agent can learn to make good
compromises, and hence receive high payoffs, in repeated games by effectively encoding
and balancing best-response, cautious, and optimistic learning biases.

Keywords Multi-agent learning · Reinforcement learning · Game theory

1 Introduction

Many real-world environments require an agent to interact repeatedly with other learning
agents. Learning successfully in such circumstances is challenging since the changing strate-
gies of learning associates creates a non-stationary environment that is problematic for tradi-
tional artificial learning algorithms. Furthermore, the way that an agent’s associates change
their behavior is based, in part, on the how the agent behaves. Thus, a self-interested agent
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seeking to maximize its payoffs over time must balance three, often conflicting, objectives
when selecting a strategy: (1) bound individual losses, (2) play “optimally” with respect to
its beliefs about associates’ current strategies and (3) influence associates’ future behavior.

The importance of these three objectives and the way that an agent must reason and
act to achieve them depends on the payoff structure of the environment (or game). When
payoffs constitute a fully competitive, constant-sum, game, an agent is primarily concerned
with playing “optimally” and bounding its losses, though it may possibly use deceit to in-
fluence opponents’ behavior. On the other hand, when agents share common interests, an
agent should focus on influencing its associates to maximize its payoffs. Specifically, an
agent should make its future actions and intentions as obvious and consistent as possible
so that associates know what to expect. In games of conflicting interest, influence and opti-
mality may be in competition, as seeking to maximize payoffs according to current beliefs
or utilities could cause associates to learn to play undesirable strategies. Thus, to maximize
payoffs, an agent might need to refrain from seeking to play “optimally” with respect to its
current beliefs (Frank 1988).

Learning effectively over repeated interactions becomes particularly challenging when
the agent cannot observe associates’ payoffs and, hence, does not know the competitive na-
ture of the game. In such situations, an agent must be open to compromise. Compromise
can produce high payoffs, but being open to compromise incurs risk. The ability to bound
losses (i.e., security) mitigates this risk and is an important element of compromise. How-
ever, in many situations, an agent can do much better. Good compromises require agents
to cooperate in order to achieve payoffs that approach or exceed the value of the game’s
Nash bargaining solution (Nash 1950), or NBS. The ability to cooperate entails the ability
to coordinate behavior in shared-interest games.

Thus, we advocate that, in repeated general-sum games, successful algorithms should
have the following three properties when associating with a wide-range of agents:

1. Security – Guarantee that long-term average payoffs meet a minimum threshold.
2. Coordination – Ability to coordinate behavior when associates share common interests.
3. Cooperation – Ability to make compromises that approach or exceed the value of the

NBS in games of conflicting interest.

These properties, which are derived from a single metric presented in Section 2, are difficult
to achieve simultaneously since security mechanisms (property 1) must not interfere with
an algorithms’ ability to coordinate and cooperate (properties 2 and 3) and vice versa. An
algorithm simultaneously possessing these properties in repeated general-sum games has
not been identified in the literature when associates’ payoffs are unobservable.

In this paper, we present, analyze, and discuss a reinforcement learning algorithm called
M-Qubed1. M-Qubed implements and balances best-response, optimistic, and cautious learn-
ing biases to anchor the learning process in order to achieve effective compromises across a
large number of two-player repeated general-sum matrix games. Specifically, we prove that
M-Qubed is secure in all general-sum matrix games. We also show via empirical studies
that M-Qubed learns to coordinate and cooperate in self play in many two-player repeated
games (Section 4). Furthermore, we show that these properties help M-Qubed to be highly
effective in evolutionary and round-robin tournaments involving 17 different learning al-
gorithms from the literature in a variety of two-player matrix games (Section 5). These
results (1) demonstrate the robustness of M-Qubed in repeated general-sum games, (2) es-

1 M-Qubed was first presented at ICML 2005 (Crandall and Goodrich 2005). In this paper, we present a
slightly modified version of M-Qubed, and analyze and explain its dynamics and properties more thoroughly.
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Table 1 (a) Row player’s payoff matrix. (b)–(d) Three different kinds of games that the row player could be
playing. In each cell, the payoff to the row player is listed first, followed by the payoff to the column player.

(a)

c d
a 0.3 1.0
b 0.0 0.7

(b) Competitive Game

c d
a 0.3, 0.7 1.0, 0.0
b 0.0, 1.0 0.7, 0.3

(c) Common Interest

c d
a 0.3, 0.3 1.0, 1.0
b 0.0, 0.0 0.7, 0.7

(d) Conflicting Interest

c d
a 0.3, 0.4 1.0, 0.0
b 0.0, 1.0 0.7, 0.6

tablish the need to encode and balance competing learning biases in multi-agent learning,
and (3) demonstrate how this balance can be achieved.

2 Background

Before presenting and analyzing M-Qubed in Section 3, we first define assumptions and
terminology, and then discuss related work.

2.1 Terms and Notation

A repeated game consists of a sequence of stages played by n players. In each stage t,
each player i selects an action at

i from a finite (and constant) set of actions Ai. The result-
ing joint action, at = (at

1, · · · ,at
n) ∈ A = A1×·· ·×An, results in the payoff vector r(at) =

(r1(a), · · · ,rn(a)), where ri(at), also denoted rt
i , is the payoff to player i when the joint action

at is played2. For simplicity, we assume that each player’s payoffs are such that its highest
possible payoff is one, and its lowest possible payoff is zero.

A strategy (or policy) for player i is a probability distribution πi over its action set Ai.
A strategy may be a pure strategy (the player selects an action deterministically) or a mixed
strategy (otherwise). A joint strategy played by the n players is denoted by πππ = (π1, . . . ,πn).
Also, let a−i and πππ−i refer to the joint action and strategy, respectively, of all players except
player i. Let ri(πππ) be the expected payoff to player i when the joint strategy πππ is played, and
let ri(πi,πππ−i) be the expected payoff to player i when it plays πi and its associates play πππ−i.

In this paper, we assume that each player i observes the full joint action at , but only
observes its own payoff rt

i ; player i does not observe rt
j for j 6= i. Thus, a player can construct

its own payoff matrix, but not that of its associates. This restriction implies that each player
does not know the competitive nature of the game. For example, Table 1(a) shows the payoffs
for a row player in a two-player, two-action game. This payoff matrix could be part of a
competitive (constant-sum) game (Table 1(b)), a common-interest game (Table 1(c)), or a
game of conflicting interest (Table 1(d)).

For simplicity, we assume a player knows its own payoff matrix prior to the beginning
of the game. We also assume that the same n players play each stage of the repeated game,
and that the game repeats a large (possibly infinite) and unknown number of times.

2.2 Learning Metrics

We adopt the prescriptive agenda for multi-agent learning (Shoham et al. 2007). Thus, we
seek an agent that maximizes its accumulated payoff over the course of the repeated game,

2 When applicable, we use subscripts to specify the player and superscripts to specify time (stage number).
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or equivalently, maximizes its average payoff per stage over the course of the game. How-
ever, the varying competitive nature of general-sum games and the wide range of possible
associates make it difficult to quantify what it means for an agent to “maximize payoffs.” A
number of metrics have been defined, of which we review the two most commonly discussed
in the literature: no regret and best response.

2.2.1 No Regret

One metric of success in repeated games is no-regret (Foster and Vohra 1999), also known
as universal consistency (Fudenberg and Levine 1998). An algorithm is said to have no-
regret if it performs at least as well in the limit as its best strategy would have performed
against its associates’ observed actions. However, it is difficult for this metric to capture how
one’s actions affect its associates’ future behavior (de Farias and Megiddo 2004). As such,
most no-regret learning algorithms learn myopic, unsuccessful, strategies in many important
repeated games, though they do provide a bound on the minimum average payoff a player re-
ceives. Recently, less-myopic no-regret algorithms have been proposed (Chang 2007, Chang
and Kaelbling 2005). However, under the knowledge restrictions we consider in this paper,
it remains unclear how these algorithms can be designed to effectively influence associates’
behaviors across the space of repeated general-sum games.

2.2.2 Best Response

Another potential objective of multi-agent learning is to learn to play a best response to
associates’ strategies. That is, a player’s best response is the strategy that maximizes its
expected payoffs with respect to its associates’ current strategies. Formally, player i’s best
response is given by: π∗i = argmaxπi ri(πi,πππ−i). When all players play a best response, the
result is a Nash equilibrium (NE) in which no player has incentive to unilaterally change
its strategy. Many algorithms have been proposed that play a best response with respect to
some form of current beliefs or utility estimates, including Fictitious Play (Fudenberg and
Levine 1998) and Q-learning (Watkins and Dayan 1992). Bowling and Veloso (2002) took
this concept one step further by arguing that a successful multi-agent learning algorithm
should both (a) learn to play a best response and (b) converge when associates’ strategies
converge. These two properties are achieved by AWESOME (Conitzer and Sandholm 2003).

While the best response can be a useful learning objective, it does not, by itself, ensure
successful learning. One reason for this is the presence of multiple NE in many games, which
entails that a successful learner cannot focus solely on unilateral changes in strategy. For
example, the folk theorem states that many repeated games have an infinite number of NE of
the repeated game (rNE) (Gintis 2000). In such situations, a successful learning algorithm
should influence associates to play a desirable equilibrium. Littman and Stone (2005) give
an algorithm to compute the rNE corresponding to the NBS (Nash 1950). While the NBS,
which we review in Section 2.2.3, produces payoffs that correspond to a desirable rNE (it
is pareto efficient and matches Nash’s definition of fairness), a self-interested agent will
sometimes find it possible to strike a compromise that is more beneficial to it individually
(e.g., the Bully agent proposed by Littman and Stone (2001)). Thus, in general, no single
rNE should be the universal objective of a self-interested agent in repeated general-sum
games.
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2.2.3 Desirable Properties: Security, Coordination, Cooperation

While no single equilibrium concept effectively defines “optimal” behavior in repeated
general-sum games, a self-interested learning algorithm should satisfy a set of properties
to be successful. In this paper, we define a set of properties to measure an algorithm’s ability
to make and accept profitable compromises. These properties are based on a metric called
level of compromise, which is computed using two points of comparison.

The first point of comparison is the maximin value vMM
i , which is the highest average

payoff that an agent can guarantee itself without some form of cooperation from associates.
vMM

i and the associated maximin strategy πMM
i are given by:

vMM
i = max

πi
min
a−i

ri(πi,a−i), (1)

π
MM
i = argmax

πi
min
a−i

ri(πi,a−i). (2)

Since we assume that player i knows its own payoff matrix, the maximin value and strategy
can be computed in polynomial time using linear programming (Chvatal 1983, Shapley
1953)3. Let vMM =

(
vMM

1 , · · · ,vMM
n
)
.

The second point of comparison is the NBS value vNBS
i , or player i’s expected payoff

when the NBS is played. The NBS, originally defined by Nash (1950) for two-player games,
can be defined as follows. Let P = {∀a ∈ A,r(a)− vMM} and let C be the set of points in
the first quadrant (including the origin) of the convex hull formed by the points in the set P.
Then, vNBS =

(
vNBS

1 , · · · ,vNBS
n
)

is given by

vNBS = argmax
c∈C

n

∏
j=1

(c j− vMM
j ). (3)

Since the NBS is pareto efficient and satisfies a notion of fairness (Nash 1950), it offers
a desirable level of proficiency that a player would potentially like to achieve. While a suc-
cessful player’s average payoff should never be below vMM

i , it should, ideally, approach or
exceed vNBS

i . To capture these goals, we define a player’s level of compromise `i as follows:

`i =
vavg

i − vMM
i +1

vNBS
i − vMM

i +1
, (4)

where vavg
i is player i’s average payoff per stage of the repeated game as t → ∞. When

payoffs are bound to the range [0,1], then 0≤ `i ≤ 2. A level of compromise of `i = 1 means
that player i’s average payoff matches the NBS value, `i > 1 means that its average payoff
exceeds the NBS value, and `i < 1 means that its average payoff is less than the NBS value.
Furthermore, when `i < 1

vNBS
i −vMM

i +1
, its average payoff is less than its maximin value.

The effectiveness of a learning algorithm is determined by the level of compromise `i
that it is able to achieve when associating with a target class of associates in a target set of
games. Furthermore, a robust learning algorithm should achieve high levels of compromise
when the target class of associates and games is large. With this in mind, we define the term
(G, Ω , C)-efficient.

3 We assume that player i’s associates can potentially view player i’s payoffs and can communicate with-
out its knowledge. Hence, all associates can act as a single agent, and vMM

i can be computed using linear
programming. Borgs et al. (2008) show that, for (n > 2)-player games, it is NP-hard for player i’s associates
to compute the minimax strategy when they cannot communicate without player i’s knowledge.
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Definition 1 (G, Ω , C)-Efficient. Let Ω be a target class of algorithms, let G be a set of
matrix games, and let 0 ≤ C ≤ 2 be a target level of compromise. Player i is (G, Ω , C)-
efficient if and only if `i ≥C in all games g ∈ G played with any of the associates in Ω .

We use (G, Ω , di)-efficiency to define three properties of compromise that a successful
learning algorithm should satisfy in general-sum games. The first property of compromise,
called security, is the ability to bound losses regardless of the game being played or how
associates behave4.

Property 1 (Security) Let Gall be the set of all general-sum matrix games, and let Ωall be the
set of all possible algorithms. Player i is secure if and only if it is ({g}, Ωall, 1

vNBS
i (g)−vMM

i (g)+1
)-

efficient for all g ∈ Gall, where vNBS
i (g) and vMM

i (g) are the NBS and maximin values for
player i in the game g. Equivalently, player i is secure if limt→∞

1
t ∑t rt

i ≥ vMM
i regardless of

the game or associates.

An agent can easily satisfy the security property by playing its maximin strategy πMM
i .

However, this static strategy is typically undesirable as a much higher level of compromise
is typically achievable. Ultimately, a successful learning algorithm should achieve an `i ≥ 1
level of compromise against associates Ω ′ ⊂ Ωall that can be induced to cooperate. This
behavior is captured by the properties of coordination and cooperation.

Property 2 (Ω -Coordination) Let G1 be the set of common-interest games. Player i satisfies
this property if it is (G1, Ω , 1− ε)-efficient, where ε > 0 is small.

Property 3 (Ω -Cooperation) Let G2 be the set of conflicting-interest games. Player i satis-
fies this property if it is (G2, Ω , 1− ε)-efficient, where ε > 0 is small.

As noted by the prefix Ω in the two previous definitions, discussions of the coordination
and cooperation properties must be cast in context of the set Ω . For simplicity throughout
this paper, we refer to the Ω -coordination and Ω -cooperation properties as simply coordi-
nation and cooperation, and quantify the use of these terms by specifying the set Ω against
whom a player satisfies these properties.

To summarize, we desire learning algorithms that are secure, and that satisfy the coordi-
nation and cooperation properties against a wide-range of learners. M-Qubed, the algorithm
presented and analyzed in this paper, takes a step in that direction. First, it is provably secure.
Second, it approaches `i = 1 levels of compromise in self play in many two-player repeated
matrix games. Third, it achieves high levels of compromise over a large number of matrix
games when associating with many learning algorithms from the literature, as demonstrated
by its high performance in a series of round-robin and evolutionary tournaments.

M-Qubed achieves these characteristics by encoding and balancing competing learning
biases. While interesting to study in the context of M-Qubed, these results also suggest that
encoding and balancing these learning biases are general principles for successful multi-
agent learning in repeated games.

2.3 Assessing the State-of-the-Art

While security, coordination, and cooperation are central to successful multi-agent learning,
they are difficult to achieve simultaneously when the payoffs of associates are unknown. As

4 We assume that associates can possibly view player i’s policy πi, but cannot determine how the agent
randomizes when πi is a mixed strategy.
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Table 2 Characteristics of typical learners in repeated matrix general-sum games. * indicates that the algo-
rithm requires knowledge of associate’s payoffs or the kind of game being played, which we disallow in this
paper.

Learning Algorithm Security Property Cooperation Compromise
(Self Play) (Self Play)

Q-Learning (Watkins and Dayan 1992) No No No
Fictitious Play (Fudenberg and Levine 1998) No No No
MinimaxQ (Littman 1994) Yes No No
WoLF-PHC (Bowling and Veloso 2002) No No No
GIGA-WoLF (Bowling 2005) Yes No No
Hyper-Q (Tesauro 2004) No No No
Satisficing Learning

No Yes Many Games(Crandall 2005, Karandikar et al. 1998, Stimp-
son and Goodrich 2003)
OAL (Wang and Sandholm 2003) No Yes No
CoLF (de Cote et al. 2006) No Yes Many Games
WPL (Abdallah and Lesser 2008) Yes No No
* NashQ (Hu and Wellman 1998) No No No
* FFQ (Littman 2001) Yes Yes No
* Manipulator (Powers and Shoham 2005) Yes Yes Yes

illustrated by Table 2, this is true even when Ω is constrained to copies of one’s self for the
coordination and cooperation properties.

Most of the algorithms listed in Table 2 satisfy no more than a single property. The al-
gorithms are typically designed either for constant-sum or shared-interest games. Only Ma-
nipulator, which requires knowledge of the payoff matrices of all players, satisfies all three
properties. Manipulator computes the NBS and seeks to enforce this strategy for a certain
number of stages. When its associates learn to play their portions of the NBS, Manipulator
continues to play its portion of the NBS. If associates fail to respond, Manipulator switches
to a fictitious play-like learning rule, and ultimately falls back to the maximin strategy if
fictitious play fails to generate secure payoffs.

Manipulator could be altered to satisfy the knowledge restrictions we consider (i.e., no
knowledge of the payoffs of associates) by spending the initial rounds of the game com-
municating its payoff matrix through its actions. If associates did the same, Manipulator
could construct the complete payoff matrix and then proceed as before. This would allow
it to achieve an `i = 1 level of compromise in self play while remaining secure. However,
outside of self play, this algorithm would likely become a secure version of fictitious play,
meaning that it would likely have difficulties making successful compromises in some im-
portant games.

While self play is important, we seek to develop algorithms that can learn to compromise
more robustly; namely algorithms that are secure and that learn to coordinate and cooperate
in both self play and when associating with other algorithms. With this goal in mind, we
present the M-Qubed algorithm.

3 M-Qubed

To make and accept profitable compromises in repeated general-sum games, M-Qubed (Max
or Minimax Q-learning = M3-Q = M-Qubed) encodes and balances three learning biases,
each of which has been encoded in one form or another in learning algorithms found in
the literature. The first learning bias, called the best-response learning bias, encourages
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M-Qubed to learn to play a best response with respect to its current beliefs about the en-
vironment (i.e., its Q-estimates). Specifically, M-Qubed uses Sarsa reinforcement learning
(Rummery and Niranjan 1994) and recurrent state (Moody et al. 2004, Sandholm and Crites
1996) to estimate its future discounted reward for taking an action from a given state. The
use of recurrent state allows M-Qubed to reason about how its actions affect the actions of
associates, and how the actions of associates affect its future payoffs.

Second, M-Qubed encodes a cautious learning bias in order to bound its losses when its
beliefs are in error. Specifically, M-Qubed’s policy moves toward its maximin value when
other compromises fail (Littman 1994). In so doing, M-Qubed is secure in all general-sum
matrix games without interfering with its ability to learn to make other, more profitable,
compromises. An alternate, but somewhat related, security mechanisms is used by Powers
and Shoham (2005).

Third, M-Qubed encodes an optimistic learning bias by initializing its Q-values to op-
timistic values. This learning bias, called the optimism-in-uncertainty principle, is known to
provide a natural method for determining how to balance exploration and exploitation (Braf-
man and Tennenholtz 2003). In so doing, M-Qubed’s behavior is biased toward strategies
with potentially high future rewards, even if such strategies expose the player to high risks.
This allows the agent to avoid action shadowing (Fulda and Ventura 2007, Stimpson et al.
2001), in which the estimated utility for taking an action corresponding to a good outcome
is low because the other possible outcomes for taking that action are low.

In the remainder of this section, we describe the details of how M-Qubed encodes and
balances these three learning biases. Specifically, we describe how M-Qubed represents and
updates its utilities, and how it selects actions based on these utilities.

3.1 Representation

While repeated matrix games are often considered to be stateless, M-Qubed uses the previ-
ous ω joint actions to define its state. Let H(ω) denote the set of all joint-action histories
of length ω . Then, M-Qubed’s current state is given by st = (at−ω , · · · ,at−1) ∈ H(ω). This
representation of state, which has been called recurrent state (Moody et al. 2004), has been
shown to increase cooperation in the prisoners’ dilemma (Sandholm and Crites 1996), as it
allows agents to learn a signaling system (Skyrms 2004).

For each a ∈ Ai and state s ∈ H(ω), M-Qubed learns its expected future discounted
reward Q(s,a). Q(s,a) is given by

Q(s,a) = r(s,a)+ γV (s,a), (5)

where r(s,a) is the expected reward M-Qubed receives immediately after taking action a
in state s, 0 < γ < 1 is a discount factor, and V (s,a) is the future rewards that M-Qubed
receives in subsequent states after taking action a in state s.

While discounting future rewards (Eq. 5) is somewhat inconsistent with the goal of
maximizing payoffs over time, M-Qubed uses reward discounting for two reasons. First,
reward discounting offers a mathematically convenient method for estimating Q(s,a) when
using standard reinforcement learning in an infinitely repeated game. High values of the
discount factor γ give a reasonable, and finite, approximation of the utility of taking action a
from state s. Second, given the uncertainty of future payoffs caused by learning associates,
M-Qubed uses reward discounting to mitigate the effects of inaccurate estimates of future
rewards while maintaining a long-term perspective. In single-agent reinforcement learning,
this is unnecessary since future rewards will necessarily converge given appropriate learning
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and exploration rates. However, in the multi-agent case, the strategies of learning associates
can and do change over time, meaning that future rewards remain uncertain. Future work
should explore other mechanisms for dealing with this uncertainty.

3.2 Q-Updates

As in standard reinforcement learning (Sutton and Barto 1998), M-Qubed estimates its fu-
ture discounted reward by iteratively updating Q-estimates after each stage of the game:

Qt+1(st ,at
i) = Qt(st ,at

i)+α
[
rt

i + γV t(st+1)−Qt(st ,at
i)
]
, (6)

where α is the agent’s learning rate and V t(st+1) is the estimated value of being in state st+1.
Watkins and Dayan (1992) showed that, when

V t(s) = max
a

Q(s,a), (7)

Qt(s,a) is guaranteed to approach its true Q-values as t → ∞, provided that each state-
action pair is visited infinitely often, the learning rate α is decreased appropriately, and the
environment is stationary. However, since matrix games between learning agents effectually
produce non-stationary environments, these results do not hold in repeated games.

Several alternatives for estimating V t(s) have been proposed to extend Q-learning to re-
peated games. In these algorithms, V t(s) is estimated using game theoretic concepts, includ-
ing minimax (Littman 1994), NE (Bowling 2000, Hu and Wellman 1998), correlated equi-
libria (Aumann 1974, Greenwald and Hall 2003), and the NBS (Qiao et al. 2006). However,
each of these methods requires knowledge of associates’ payoffs and assumes that associates
will play as expected. Furthermore, while sometimes successful, none of these approaches
have demonstrated successful behavior across the range of general-sum games.

As in Sarsa (Rummery and Niranjan 1994), M-Qubed uses an on-policy method for
estimating V t(s):

V t(s) = ∑
a∈Ai

π
t
i (s,a)Qt(s,a), (8)

where π t
i (s,a) is the probability at time t that player i takes action a from state s. We chose

this formulation to better deal with the need to play mixed strategies in repeated games.

3.3 Strategy Selection

M-Qubed uses its Q-estimates to determine how to bias its behavior toward actions that
produce the highest payoffs given its experience (best-response learning bias). However,
since its Q-estimates are not guaranteed to reflect actual payoffs, M-Qubed also encodes a
cautious learning bias which encourages it to play its maximin strategy. To balance these
two competing objectives, M-Qubed probabilistically chooses between these two learning
biases in an attempt to learn good compromises. Lastly, to help avoid convergence to myopic
solutions, M-Qubed encodes an optimistic learning bias that encourages it to play solutions
that yield profitable, but potentially risky, solutionss. We describe each of these mechanisms
in detail.
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3.3.1 Encoding a Best-Response Learning Bias

In standard reinforcement learning, an agent plays the pure strategy corresponding to its
highest Q-value in the current state (with some exploration):

at
i = π

∗
i = argmax

a∈Ai
Qt(st ,a). (9)

However, in repeated games, an agent’s best strategy is sometimes a mixed strategy. For
example, in many games, the maximin strategy πMM

i is a mixed strategy. As such, M-Qubed
must have the ability to play mixed strategies. Unfortunately, while sometimes necessary,
using mixed strategies can make it difficult to strike profitable compromises in some impor-
tant repeated games, since stochastic behavior can portray unclear signals (Axelrod 1984,
Skyrms 2004).

Thus, when the competitive nature of the game is unknown a priori, an effective learn-
ing algorithm for repeated general-sum games must learn whether to play pure or mixed
strategies. Importantly, an agent should learn to act predictably when associates are apt to
coordinate and cooperate, and unpredictably in competitive situations. While many algo-
rithms choose to do this by learning along the continuum of mixed strategies (Abdallah and
Lesser 2008, Bowling and Veloso 2002, Zinkevich 2003), M-Qubed only considers play-
ing its maximin strategy πMM

i and each of its pure strategies a ∈ Ai. Specifically, M-Qubed
encodes the following best-response strategy rule:

π
∗
i (s)←

{
argmaxa∈Ai Qt(s,a) if maxa∈Ai Qt(s,ai) >

vMM
i

1−γ

πMM
i otherwise

(10)

In words, this strategy rule selects a pure strategy if its highest Q-value in the current state

meets or exceeds the discounted sum of vMM
i (given by ∑

∞
t=0 γ tvMM

i = vMM
i

1−γ
). Otherwise,

M-Qubed reasons that its maximin strategy will produce higher payoffs, so it selects πMM
i .

3.3.2 Encoding a Cautious Learning Bias

One fault of the best-response strategy rule is that, when associates learn, Q-estimates are not
guaranteed to converge to actual payoffs. This means that an agent using the best-response
strategy rule can potentially be exploited and is not secure. To ensure security, M-Qubed
employs an alternate strategy rule that does not depend on its utility estimates.

Let Laccum
i (t) be player i’s accumulated loss up to time t, where loss is defined as how

much its payoffs fall short of the maximin value vMM
i . Formally, let

Laccum
i (t) = max

(
0, t[vMM

i − vavg
i (t)]

)
(11)

be player i’s accumulated loss up to time t. Also, let Ltol
i be player i’s risk tolerance, or

the amount of accumulated loss that player i is willing to risk or tolerate. Then, M-Qubed
encodes the following cautious strategy rule:

π
∗
i (s)←

{
argmaxa∈Ai Qt(s,a) if, ∀τ ≤ t, Laccum

i (τ) < Ltol
i

πMM
i otherwise

(12)

In words, this strategy rule selects a best response from among its pure strategies until M-
Qubed’s accumulated loss Laccum

i reaches its risk tolerance Ltol
i . If M-Qubed’s risk tolerance
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is ever exceeded, this strategy rule specifies that M-Qubed play its maximin strategy πMM
i

in all stages thereafter.
While guaranteeing security, the cautious strategy rule can reduce an agent’s opportu-

nities to pursue more profitable compromises. For example, when average payoffs in early
stages of the game are below vMM

i , the cautious strategy rule causes an agent to play πMM
i ,

even when other strategies would eventually produce higher payoffs as associates learned.
Thus, by encoding this cautious learning bias, M-Qubed meets the security requirement, but
reduces its capabilities with respect to the coordination and cooperation properties.

3.3.3 Balancing the Best-Response and Cautious Learning Biases

In repeated games, the best-response strategy rule encourages the player to maximize its
payoffs, while the cautious strategy rule allows a player to be secure. M-Qubed achieves
a balance between these learning biases by probabilistically selecting between the best re-
sponse strategy rule π

∗
i (s) and the cautious strategy rule π∗i (s), and updating this probability

after each stage of the game based on which strategy rule is more successful. Let β t
i be the

probability that player i uses the cautious strategy rule π∗i (s) in stage t, and let 1− β t
i be

the probability that it uses the best-response strategy rule π
∗
i (s) in stage t. Then, M-Qubed’s

strategy in state s is (without exploration):

π
∗
i (s) = β

t
i π
∗
i (s)+(1−β

t
i )π
∗
i (s). (13)

The probability β t
i is based on the ratio of player i’s accumulated loss Laccum

i to its risk
tolerance Ltol

i , and is given by

β
t
i ←

 1 if ∃τ ≤ t such that Laccum
i (τ)≥ Ltol

i(
Laccum

i (t)
Ltol

i

)10
otherwise

(14)

To encourage coordination and cooperation in early stages of the game, the ratio Laccum
i (t)

Ltol
i

is

(heuristically) raised to the power of ten to bias the agent toward the best-response strategy
rule π i(s). Raising this ratio to the power of ten works sufficiently well for our purposes, but
other values could be explored in future work.

Thus, the probability β t
i is used to balance the cautious and best-response learning biases

based on a tolerance to risk. For M-Qubed, risk is measured as the difference between the
maximin value and the average payoff. This encodes how much loss the agent will tolerate
while seeking to learn a profitable compromise. The variable Ltol

i allows the designer to
specify how much risk M-Qubed should take. Lower values of Ltol

i specify less risk, but
provide less time for M-Qubed to learn a more profitable compromise.

Balancing the best-response and cautious learning biases in this way can potentially
limit M-Qubed’s ability to learn to play a best response. Since the cautious learning biases
kicks in as Laccum

i (t) approaches Ltol
i and the player’s average payoff is below the maximin

value, a finite sequence of exploratory actions could cause M-Qubed to converge to its max-
imin strategy even when other strategies would be more profitable. Thus, M-Qubed is not
guaranteed to play a best-response against a stationary opponent. However, the probability
that the cautious learning bias will prohibit M-Qubed from learning a best response against
a stationary associate becomes vanishingly small as Ltol

i is increased. Additionally, as long
as Ltol

i is finite, M-Qubed is secure.
We provide this latter result as a theorem in the next section. Before doing so, however,

we discuss how M-Qubed encodes its optimistic learning bias. This learning bias encourages
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the agent to seek for outcomes with high potential future discounted rewards, even when
these outcomes carry considerable risk.

3.3.4 Encoding an Optimistic Learning Bias

Since M-Qubed uses the previous ω joint-actions as its state, its best-response learning bias
causes it to learn to play strategies that lead to future joint-action histories (i.e., future states)
that produce high Q-values. However, since the strategies of learning associates continue to
change, the value of future states are likely to be inaccurate until all of the player’s strategies
converge. The result is that the best-response mechanism tends to produce myopic strategies,
strategies that produce high instantaneous rewards but not necessarily high future rewards.
Convergence to optimal strategies with respect to the long-term behavior of learning asso-
ciates is not guaranteed, nor is it necessarily even likely.

M-Qubed implements a mechanism to encode an optimistic learning bias to help over-
come this problem. Like Brafman and Tennenholtz (2003), M-Qubed sets its initial Q-
values to their highest possible discounted reward ( 1

1−γ
). Coupled with traditional Q-updates

(Eqs. 6 and 8) and recurrent state, this creates a bias for actions that lead to states with high
Q-values. Thus, M-Qubed is biased to play actions that lead to states (i.e., joint-action histo-
ries) that either have produced high payoffs in the past (best-response learning bias) or have
not been visited often in the past (optimistic learning bias). Effectually, this produces a re-
laxation search, similar to the relaxation searches encoded by satisficing learning (Stimpson
et al. 2001), in which M-Qubed’s Q-values descend over time until it finds a strategy that
yields an expected discounted reward at least as high as its highest Q-value over all states. In
subsequent sections, we show that this learning bias allows M-Qubed to learn to play highly
successful, non-myopic solutions that algorithms with straight-forward best-response learn-
ing biases do not.

The optimistic learning bias produced by setting initial Q-values high affects M-Qubed’s
strategy selection until Q-estimates relax to realistic levels. However, if the agent’s losses
during this relaxation search exceed the agent’s risk tolerance Ltol

i , then the optimistic and
best-response learning biases are overridden by the cautious learning bias (so the agent be-
gins to play its maximin strategy). Thus, to adequately balance the optimistic and cautious
learning biases, the learning rate α and the loss tolerance Ltol

i must be set so that M-Qubed
can adequately explore various compromises while minimizing its losses. A heuristic for set-
ting the learning rate α to achieve this balance and other parameter heuristics are discussed
in the rest of this section.

3.4 Algorithm Summary and Parameter Heuristics

The complete M-Qubed algorithm is summarized in Table 3. The remainder of this sec-
tion discusses heuristics for setting the learning rate α and for determining how M-Qubed
explores. These treatments are sufficient given the scope of this paper; future work should
consider whether alternatives to these heuristics would improve behavior.

3.4.1 Learning Rate

The success of M-Qubed depends in large part on its learning rate α . To effectively balance
its optimistic and cautious learning biases, the agent must learn slowly enough to thoroughly
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1) Select α (according to Eq. 15), γ , and η

2) ∀s ∈ H(ω) and a ∈ Ai, set πi(s,a)← 1
|Ai| , Q(s,a)← 1

1−γ

3) Set t← 1

4) Repeat,
a) Take action a according to πi(st)
b) Observe reward rt

i and joint action at :
i) Determine st+1

ii) Update Q(st ,a) using Eqs. 6 and 8
iii)Update πi(st) using Eq. 16

c) t← t +1

Table 3 The M-Qubed algorithm.

explore potential compromises, but fast enough to keep potential losses low. M-Qubed at-
tempts to set its learning rate so that, under exploitation, its Q-estimates fall to the dis-

counted sum of its maximin value vMM
i

1−γ
as its accumulated loss Laccum

i approaches its risk
tolerance Ltol

i . Using the approximations discussed in Appendix A, this is achieved with

α =
1−
(

ζ

1−vMM
i +ζ

) ζ |Ai ||H(ω)|
Ltol

i

1− γ
(15)

where ζ > 0 is the small positive constant defined in Appendix A. In this way, given the
discount factor γ and the history length ω , the balance among the cautious, best-response,
and optimistic learning biases is controlled by the variable Ltol

i .
Finally, we note that the convergence of Q-values in stationary environments requires

that the learning rate α decays slowly, but not too slowly (Watkins and Dayan 1992). How-
ever, in multi-agent environments, where convergence of Q-values is not guaranteed anyway,
we do not find it useful to decrease the learning rate over time. Thus, M-Qubed maintains a
constant (but small) learning rate α so that it can continue to learn as associates learn.

3.4.2 Exploration

Another design consideration in reinforcement learning algorithms is the trade-off between
exploration and exploitation (Kaelbling et al. 1996). In multi-agent environments, this trade-
off can be particularly important (de Farias and Megiddo 2005). In addition to the explo-
ration caused by setting initial Q-values high, M-Qubed uses a form of ε-greedy exploration
(Sutton and Barto 1998) when it has not recently visited the state with the highest Q-value
(or close thereto) and when its risk tolerance has not been exceeded (i.e., β t

i < 1). This helps
M-Qubed to avoid convergence to myopic, locally optimal, strategies.

Let S∗ ⊆ H(ω) denote the set of states that have a Q-value within a small margin of the
highest Q-value over all states s ∈ H(ω), and let Sprev ⊆ H(ω) be the set of states that M-
Qubed has visited in the last |H(ω)| stages of the game. Then, S∗∩Sprev is the set of states
that M-Qubed has recently visited that have high Q-values. When this set is empty, M-Qubed
reasons that its current strategies, along with the strategies of associates, are keeping it in a
local maxima. In such situations, it explores with a small probability in attempt to improve
its future payoffs.
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Thus, with exploration, M-Qubed’s strategy in state s is given by:

π
t
i (s)←

{
π∗i (s), if β t

i = 1 or S∗∩Sprev 6= /0
[1−η(t)]π∗i (s)+η(t)χi, otherwise (16)

where χi denotes the uniform probability distribution over the action set Ai, and η(t)∈ [0,1)
is an exploration rate set so that η(t)→ 0 as t → ∞. In words, M-Qubed randomly selects
actions with probability η(t) if it has cause to believe that its current strategies are causing
it to converge to local maxima, and uses Eq. 13 otherwise.

4 Properties of M-Qubed

To demonstrate the usefulness of encoding and balancing cautious, best-response, and opti-
mistic learning biases in repeated general-sum games, we begin to analyze M-Qubed with
respect to the security, coordination, and cooperation properties in this section. We first
prove that M-Qubed is secure in all general-sum matrix games. We then demonstrate empir-
ically that, in self play, M-Qubed reaches `i = 1 levels of compromise in many conflicting-
and common-interest games. In the next section, we analyze M-Qubed’s ability to compete,
coordinate, and cooperate when associating with 16 representative algorithms from the lit-
erature.

4.1 Security

Recall that M-Qubed encodes a cautious learning bias that “kicks in” as its losses Laccum
i (t)

approach its risk tolerance Ltol
i . This learning bias makes it secure in all general-sum matrix

games, regardless of how its associates behave. We establish this as a theorem.

Theorem 1 M-Qubed is secure in all repeated general-sum matrix games.

Proof We have two cases: either Laccum
i (t) < Ltol

i for all t, or ∃t such that Laccum
i (t) ≥ Ltol

i .
In the first case, M-Qubed’s losses are bounded by Ltol

i . In the second case, since M-Qubed
plays its maximin strategy πMM

i with probability one once Laccum
i (t) ≥ Ltol

i (Eq. 16), its
expected accumulated loss thereafter is less than or equal to zero. Thus, M-Qubed’s expected

losses in this case are bounded by Ltol
i + vMM

i . In either case, E[vavg
i (t)] ≥ vMM

i − Ltol
i +vMM

i
t .

Since Ltol
i +vMM

t → 0 as t→ ∞, M-Qubed is secure. ut

As an illustration of Theorem 1, Fig. 1 shows M-Qubed’s payoffs over time in Rock,
Paper, Scissors (Table 4(l)) against a seer agent, which has full knowledge of M-Qubed’s
strategy π t

i (s). The figure shows that M-Qubed’s average payoffs are initially close to zero
(the lowest payoff) in each stage. However, once M-Qubed’s cautious strategy rule begins
to take effect, its payoffs improve until its average payoff reaches vMM

i = 0.5 after approx-
imately 3,500 stages. A lower loss tolerance Ltol

i (parameters were set according to Table 7
in Appendix B) would decrease the amount of time it takes M-Qubed to converge to its
maximin strategy.

Fig. 1 also shows the performance of three variants of the M-Qubed algorithm against
the seer agent in this game. The first variant, labeled w/o maximin strategy, does not encode
its maximin solution; it plays pure strategies as given by Eq. 9 rather than select its strategy
using Eq. 13. As such, the seer exploits it for the duration of the repeated game. The second
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Fig. 1 Payoffs, averaged over 200 trials, of M-Qubed and variants against a seer in Rock, Paper, Scissors
(Table 4(l)).

Table 4 Payoff matrices for selected matrix games. Payoffs are rounded to two decimal points.

(a) Common Interest Game

c d
a 1.0, 1.0 0.0, 0.0
b 0.0, 0.0 0.5, 0.5

(b) Coordination Game

c d
a 1.0, 0.5 0.0, 0.0
b 0.0, 0.0 0.5, 1.0

(c) Stag hunt

c d
a 1.0, 1.0 0.0, 0.75
b 0.75, 0.0 0.5, 0.5

(d) Tricky Game

c d
a 0.0, 1.0 1.0, 0.67
b 0.33, 0.0 0.67, 0.33

(e) Prisoners’ Dilemma

c d
a 0.6, 0.6 0.0, 1.0
b 1.0, 0.0 0.2, 0.2

(f) Battle of the Sexes

c d
a 0.0, 0.0 0.67, 1.0
b 1.0, 0.67 0.33, 0.33

(g) Chicken

c d
a 0.84, 0.84 0.33, 1.0
b 1.0, 0.33 0.0, 0.0

(h) Shapley’s Game

d e f
a 0.0, 0.0 1.0, 0.0 0.0, 1.0
b 0.0, 1.0 0.0, 0.0 1.0, 0.0
c 1.0, 0.0 0.0, 1.0 0.0, 0.0

(i) Security Game

c d
a 0.84, 0.33 0.84, 0.0
b 0.0, 1.0 1.0, 0.67

(j) Offset Game

c d
a 0.0, 0.0 0.0, 1.0
b 1.0, 0.0 0.0, 0.0

(k) Matching Pennies

c d
a 1.0, 0.0 0.0, 1.0
b 0.0, 1.0 1.0, 0.0

(l) Rock, Paper, Scissors

d e f
a 0.5, 0.5 1.0, 0.0 0.0, 1.0
b 0.0, 1.0 0.5, 0.5 1.0, 0.0
c 1.0, 0.0 0.0, 1.0 0.5, 0.5

variant, labeled w/o cautious bias, does not encode the cautious learning bias. Rather, it
uses the best-response strategy rule defined in Eq. 10 in place of Eq. 13 to determine π∗i (s).
While this agent learns to play its maximin strategy most of the time, its Q-estimates are
sometimes inflated, causing it to play a pure strategy. In such cases, the seer exploits it, so
its average payoffs fall short of the maximin value throughout the duration of the repeated
game. The third variant, labeled off-policy and w/o cautious bias, is identical to the second
variant, except that it estimates the value of its next state as in Q-learning (Eq. 7) rather
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Fig. 2 Average asymptotic levels of compromise achieved in self play. Levels of compromise are measured
as the average level of compromise achieved by the agents in the last 10,000 stage games.

than Sarsa (Eq. 8). This results in less accurate Q-estimates, which lead to the agent being
exploited more frequently.

These results demonstrate that a reinforcement learning algorithm should encode a cau-
tious learning bias in repeated games. Furthermore, when considering playing mixed strate-
gies in repeated games, an on-policy rather than off-policy method should be used by rein-
forcement learners.

4.2 Cooperation and Compromise in Self Play

Recall that M-Qubed attempts to establish profitable compromises by blending cautious,
best-response, and optimistic learning biases. We now analyze how these learning biases
promote coordination and cooperation. To do so, we begin to analyze M-Qubed in self play
in the suite of two-player matrix games shown in Table 4(a) – 4(j). These ten matrix games
test an agent’s ability to learn to coordinate actions, deal with risk, and share profits. We also
evaluate M-Qubed in random two-player matrix games with between two and five actions.
As a point of comparison in each game, we also analyze the performance of four other
representative algorithms from the literature, namely Sarsa (with random initial Q-values),
CoLF, GIGA-WoLF, and stochastic fictitious play (sFP), in self play. The parameter settings
used by each of the algorithms are given in Appendix B.

Fig. 2 shows the average level of compromise achieved by M-Qubed and the four other
algorithms after 300,000 stages in the selected games. In nine out of ten of these games,
M-Qubed’s average level of compromise in self play is close to `i = 1. Each of the other
algorithms’ levels of compromise over these ten games are statistically lower than the levels
of compromise achieved by M-Qubed (p < 0.001). In particular, M-Qubed outperforms each
of the other algorithms by a wide margin in the Stag hunt and the Security game. In each
of these games, action shadowing causes the other algorithms to learn to play less risky, but
less profitable, solutions.

M-Qubed’s ability to coordinate and cooperate is further verified by its behavior in ran-
dom games, as shown in Fig. 3. In both random common- and conflicting-interest games,
M-Qubed’s average level of compromise is near `i = 1, and its average payoffs are higher
than the other four algorithms in self play. Pairwise statistical comparisons show statistical
differences between M-Qubed’s performance and that of Sarsa, GIGA-WoLF, and CoLF in
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Fig. 3 Average levels of compromise achieved in self play in (a) randomly generated common-interest games
and (b) randomly generated games of conflicting interest after 300,000 stages. Results are an average of 50
random games for each action size.

the random common-interest games (p < 0.001), but show no statistical difference between
M-Qubed and sFP (p = 0.357). For the random conflicting-interest games, pairwise com-
parisons show statistical differences between M-Qubed and Sarsa, GIGA-WoLF, and sFP
(p < 0.001), but not CoLF (p = 0.592). These results exemplify that, at least in self play,
M-Qubed satisfies the coordination and cooperation properties in most two-player repeated
general-sum games.

While M-Qubed is able to reach `i = 1 levels of compromise in most two-player matrix
games when its state is defined by a single joint action (i.e., ω = 1), it does not do so in
the Offset game (Fig. 2). In this game, both players depend on each other to receive any
positive payoff. A reasonable compromise, which corresponds to the NBS of the game, is
for the agents to take turns receiving the positive payoff. Unfortunately, dependencies in Q-
values make it difficult for either algorithm to consistently learn this solution when ω = 1.
However, both M-Qubed and Sarsa learn to play the NBS in self play when ω is increased
(Fig. 4(a)). Furthermore, increasing ω does not appear to substantially decrease M-Qubed’s
asymptotic payoffs in self play in other games (e.g., Fig. 4(b)), though increasing ω does
increase the size of M-Qubed’s state space exponentially, thus decreasing how fast M-Qubed
learns.

4.3 What makes M-Qubed successful in self play?

The previous results demonstrate that M-Qubed learns to coordinate and cooperate in self
play across a wide-range of repeated general-sum games. To better understand what makes
M-Qubed successful in self play, we compare M-Qubed with five other algorithms that differ
from M-Qubed in at least one way:

– M-Qubed without an optimistic learning bias – This variant does not encode the opti-
mistic learning bias. Rather, it sets its initial Q-values randomly in the range [0, 1

1−γ
].

– M-Qubed without maximin strategy – This variant does not encode the cautious learning
bias or its maximin strategy. In this variant, π∗i is given by Eq. 9 rather than Eq. 13.

– M-Qubed without an exploration stopping rule – This variant replaces Eq. 16 with:

π
t
i (s) = [1−η(t)]π∗i (s)+η(t)χi.
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Fig. 4 Average asymptotic levels of compromise in self play given the history length ω in (a) the offset game
and (b) the prisoners’ dilemma.
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Fig. 5 Average levels of compromise over selected games for M-Qubed and five variants.

Thus, rather than always playing a best response when current strategies appear to be
effective, this variant continues to explore randomly with probability η(t) in each stage
of the game.

– M-Qubed with decreasing α – Recall that the decision to maintain a constant learning
rate α was made to allow M-Qubed’s beliefs (or Q-estimates) to continue to evolve in
order to adapt to associates’ changing behavior. This variant decreases its learning rate
α over time in order to help Q-estimates converge.

– Sarsa with optimistic learning bias – This M-Qubed variant combines the differences of
the previous three variants. In other words, it does not encode the maximin strategy, it
does not encode M-Qubed’s exploration stopping rule, and it decreases its learning rate
α over time. It does, however, initialize its Q-values optimistically.

The average levels of compromise achieved by M-Qubed and these five variants over
the ten selected matrix games are shown in Fig. 5. The figure shows that, in self play, the
variant that achieved the lowest average level of compromise was the one that did not encode
the optimistic learning bias. Its level of compromise was statistically lower than M-Qubed’s
(p < 0.001). This shows that M-Qubed’s ability to coordinate and cooperate in self play
is significantly increased by its initial optimism coupled with its use of the previous joint
actions to define state.
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Fig. 5 also indicates that, individually, M-Qubed’s stopping rule, its constant learning
rate, and its encoding of the maximin value did not positively or negatively impact the level
of compromised it achieved in self play in common- and conflicting-interest games. How-
ever, Sarsa with optimistic learning bias, which is equivalent to M-Qubed except that it does
not encode any of these three characteristics, achieved a slightly lower, but statistically sig-
nificant (p < 0.001), level of compromise in self play in the selected games. This latter set of
observations should not be given too much weight since these results are only for self play in
which agents have similar parameter settings. We further evaluate the importance of a con-
stant learning rate and stopping exploration when playing against other learning algorithms
in Section 5.3, and find that they have little, if any, effect on M-Qubed’s performance.

In summary, the results of this section suggest that the optimistic learning bias is nec-
essary to learn to coordinate and cooperate in self play. This is similar to how the cautious
learning bias appears to be necessary to ensure security. In the next section, we analyze
M-Qubed’s ability to learn good compromises when paired with other learning algorithms.

5 Associating with Other Learners

The goal of Section 4.2 was to provide preliminary evidence that M-Qubed could learn to
make profitable compromises by balancing cautious, best-response, and optimistic learning
biases. However, most of the results of that section are limited to self-play. We now analyze
M-Qubed’s behavior in a series of round-robin and evolutionary tournaments played with
16 other learning algorithms from the literature. In this section, we describe the design of
these tournaments, and present and analyze their results.

5.1 Tournament Descriptions

Following the lead of Axelrod (1984), we evaluated M-Qubed’s ability to make good com-
promises in two kinds of tournaments. First, we conducted a set of round-robin tournaments
in which each of the 17 algorithms was paired with every other algorithm and itself in each
game. Each pairing consisted of a repeated game lasting 300,000 stages. An algorithm’s
performance was measured as its average payoff per stage when paired with each of the 17
algorithms. To mitigate stochastic effects, each tournament was repeated 50 times.

The second set of tournaments we conducted were evolutionary tournaments. In these
tournaments, a large population of agents, each employing one of the 17 algorithms, was
evolved over a series of generations according to the fitness of the algorithms. In a gener-
ation, each agent in the population was randomly paired with another agent in a repeated
game lasting 300,000 stages. Initially, each algorithm was equally represented in the popu-
lation. The proportion of the population employing each algorithm was then altered in each
subsequent generation using the replicator dynamic (Taylor and Jonker 1978). An algo-
rithm’s performance in these tournaments was measured as the percentage of the population
employing that algorithm after 1000 generations. Appendix C describes these evolutionary
tournaments in more detail.

The round-robin tournaments place equal weight on an algorithm’s performance against
all associates. Thus, an algorithm can be successful if it can find a way to exploit a few
less successful algorithms. On the other hand, a successful algorithm in the evolutionary
tournaments must perform well when associating with other successful algorithms, since
successful algorithms will dominate the population in later generations.
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We conducted both round-robin and evolutionary tournaments in each of the twelve
games shown in Table 4. We also conducted both kinds of tournaments in random constant-
sum games, random common-interest games, and random games of conflicting interests.
Each set of random games consisted of 200 games with between two and five actions.

5.1.1 Algorithms and Parameters

The 17 algorithms entered into the tournaments are listed in Table 7 in Appendix B. These
algorithms were chosen based on the following criteria. First, each algorithm entered into
the tournament appeared in a top conference or journal over the past couple of decades.
Many of these algorithms have been repeatedly cited in the literature. Second, the algo-
rithms were chosen to represent different schools of thought within the community, includ-
ing belief-based algorithms, reinforcement learning algorithms, gradient-ascent algorithms,
no-regret algorithms, and a satisficing learning algorithm. Third, none of the algorithms
require knowledge of associates’ payoffs.

The parameter values used by the various algorithms were selected to preserve the vari-
ous schools of thought advocated by the authors of the algorithms and to ensure that each of
the algorithms converged long before the completion of 300,000 stages. Where possible, we
used the parameter settings indicated by the authors of the algorithms. Details concerning
the parameter values used by each algorithm are given in Appendix B.

5.2 Results

5.2.1 Selected Games

The results of both the round-robin and evolutionary tournaments in the twelve selected
games are summarized in Table 5. While no algorithm was dominant in all games, M-Qubed
was the most successful learning algorithm across all twelve games in both the round-robin
tournaments and the evolutionary tournaments. Averaged over all games, M-Qubed had the
highest payoff per stage game (0.616) and held the largest population share after 1000 gen-
erations (34.2%). Pairwise statistical comparisons show a statistically significant difference
between M-Qubed’s payoffs across the selected games and the payoffs of each of the other
algorithms (p < 0.001).

M-Qubed placed in the top three in eight out of the twelve round-robin tournaments, and
nine of the twelve evolutionary tournaments. Furthermore, it performed well in each kind of
game. In the common-interest game, M-Qubed finished third in the round-robin tournament,
and second in the evolutionary tournament. In the constant-sum games (Matching pennies
and Rock, paper, scissors), M-Qubed finished first in both tournaments. In games of con-
flicting interest, M-Qubed was the most consistent algorithm, scoring in the top three in five
out of the nine round-robin tournaments, and six out of nine evolutionary tournaments.

M-Qubed performed particularly well in games that require agents to learn high-risk so-
lutions. These games include the Stag hunt, the Security game, and the Prisoners’ dilemma.
M-Qubed’s success in these games can be attributed to its ability to bound losses when asso-
ciates are not apt to take risks, while learning mutually beneficial solutions when associates
are willing to take risks.

On the other hand, M-Qubed performed the worst in games in which an agent can profit
by “bullying” associates to play a particular solution. Two examples of these types of games
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Table 5 Summary of tournament results for the twelve selected games. Average round-robin payoffs refer to
the average payoff per stage against all associates. Population after 1000 generations refers to the average
composition of the population after 1000 generations in the evolutionary tournament. Only the top three
scorers are listed, except when M-Qubed did not place in the top three.

Game Average Round-Robin Payoffs Population after 1000 Generations

Common Interest Game

1. WMA 0.988 1. FP 19.3%
2. Exp3 0.986 2. M-Qubed 18.3%
3. M-Qubed 0.984 3. AP 16.6%
1. FP 0.938 1. FP 100%

Coordination 2. Hyper-Q 0.877
Game 3. GIGA-WoLF 0.857

11. M-Qubed 0.666

Stag hunt
1. S-alg 0.679 1. S-alg 66.3%
2. Sarsa 0.642 2. M-Qubed 33.4%
3. M-Qubed 0.620 3. CoLF 0.3%

Security Game
1. M-Qubed 0.617 1. M-Qubed 100%
2. Sarsa 0.607
3. S-alg 0.601

Tricky Game
1. M-Qubed 0.737 1. S-alg 51.8%
2. CoLF 0.721 2. M-Qubed 48.2%
3. Sarsa 0.719

Offset Game

1. FP 0.447 1. FP 100%
2. GIGA 0.365
3. GIGA-WoLF 0.349
9. M-Qubed 0.163

Prisoners’ Dilemma
1. M-Qubed 0.301 1. S-alg 98.6%
2. Sarsa 0.297 2. M-Qubed 1.4%
3. S-alg 0.294

Battle of the Sexes

1. Hyper-Q 0.941 1. Hyper-Q 97.2%
2. FP 0.927 2. FP 2.8
3. GIGA 0.911

10. M-Qubed 0.800

Chicken

1. S-alg 0.920 1. S-alg 64.1%
2. Exp3 0.886 2. M-Qubed 35.9
3. WMA 0.853
8. M-Qubed 0.763

Shapley’s Game
1. M-Qubed 0.551 1. M-Qubed 100%
2. GIGA-WoLF 0.496
3. Sarsa 0.495

Matching Pennies
1. M-Qubed 0.590 1. M-Qubed 38.9%
2. sFP 0.558 2. GIGA-WoLF 15.0%
3. Sarsa 0.550 3. sFP 12.6%

Rock, Paper, Scissors
1. M-Qubed 0.600 1. M-Qubed 34.8%
2. sFP 0.570 2. sFP 21.7%
3. Sarsa 0.536 3. WPL 11.8%

Average in Selected
Games

1. M-Qubed 0.616 1. M-Qubed 34.2%
2. Sarsa 0.600 2. S-alg 24.5%
3. CoLF 0.586 3. FP 18.5%

are the Coordination game and Battle of the sexes. In each case, the more successful algo-
rithms were those that repeatedly played the action corresponding to their highest payoff.

M-Qubed’s high average performance in both round-robin and evolutionary tournaments
can be attributed in part to its ability to perform relatively well against both successful and
unsuccessful algorithms. This is demonstrated in Fig. 6, which compares the average stage
payoffs of each of the algorithms in self play, averaged over the twelve selected games, with
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Fig. 6 M-Qubed’s average payoffs across the twelve selected games (Table 4) played with each of the 17
algorithms. These payoffs are compared to associates’ performance in self play. The algorithms are ordered
so that the more successful algorithms are on the left.

M-Qubed’s average stage payoff when it was paired with each algorithm. In the figure, the
algorithms are sorted from left to right so that the more successful algorithms are on the left
and less successful algorithms are on the right.

Fig. 6 shows a couple of important trends. First, M-Qubed scored higher against 13
out of the 16 other algorithms than the algorithms performed against themselves. Only sFP,
WMA, and WoLF-PHC performed slightly better in self play than M-Qubed performed
against them. Second, M-Qubed performed very well against the top algorithms. As we
reported previously, it performs very well in self play (its payoffs in self play are the highest
among all algorithms), and it receives high payoffs when associating with the other top
performing algorithms (Sarsa and CoLF).

This latter point is supported by Fig. 7, which shows the average performance of the
four highest scoring algorithms (M-Qubed, Sarsa, CoLF, and GIGA-WoLF) against the eight
highest scoring algorithms. The figure shows that M-Qubed’s average payoff meets or ex-
ceeds the other three top performing algorithms’ payoffs when associating with seven out of
the eight top algorithms. Thus, when the population becomes more populated by success-
ful algorithms in evolutionary tournaments, M-Qubed’s performance stays high due to its
ability to learn profitable compromises.

5.2.2 Random Games

The previously presented results indicate that M-Qubed learns profitable compromises in a
suite of repeated matrix games. To ensure that these results are representative of general-
sum games, we also conducted tournaments in randomly generated games with between
two and five actions. In particular, we conducted both round-robin and evolutionary tourna-
ments in random common-interest games, random constant-sum games, and random games
of conflicting interest5.

The results of these round-robin tournaments, shown in Table 6, mirror the results from
the selected games. M-Qubed’s average payoffs were highest for all three sets of random
games. Pairwise statistical comparisons show that M-Qubed’s payoffs were statistically

5 Hyper-Q was not entered into these tournaments due to its computational inefficiencies in games with
more than three actions.
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Fig. 7 Average payoffs of the four top-performing algorithms in selected games against other top performers.

Table 6 Average payoffs round-robin tournaments of random games with between two and five actions.

Common Interest Conflicting Interest Constant-Sum
1. M-Qubed 0.968 1. M-Qubed 0.828 1. M-Qubed 0.532
2. GIGA 0.965 2. CoLF 0.805 2. sFP 0.527
3. GIGA-WoLF 0.965 3. sFP 0.799 3. GIGA-WoLF 0.515
4. FP 0.965 4. AP 0.797 4. GIGA 0.514
5. sFP 0.964 5. GIGA 0.797 5. Sarsa 0.509
6. AP 0.963 6. GIGA-WoLF 0.796 6. WMA 0.509
7. WMA 0.957 7. FP 0.788 7. AP 0.507
8. CoLF 0.952 8. Sarsa 0.784 8. Exp3 0.503
9. S-alg 0.945 9. WMA 0.784 9. WPL 0.501

10. CJAL 0.944 10. S-alg 0.782 10. CoLF 0.500
11. Exp3 0.944 11. CJAL 0.776 11. WoLF-PHC 0.498
12. NSCP 0.936 12. Exp3 0.774 12. PHC 0.495
13. WPL 0.936 13. WPL 0.772 13. FP 0.488
14. PHC 0.930 14. NSCP 0.762 14. NSCP 0.474
15. WoLF-PHC 0.930 15. WoLF-PHC 0.761 15. S-alg 0.472
16. Sarsa 0.913 16. PHC 0.759 16. CJAL 0.453

higher than each of the other algorithms in both conflicting-interest and constant-sum games
(p < 0.001 in each case). In the random common-interest games, M-Qubed’s payoffs were
not statistically different from those of GIGA, GIGA-WoLF, FP, sFP, and AP, but they were
statistically higher than the payoffs of the other algorithms.

Interestingly, the difference between M-Qubed and the next highest scoring algorithm
was greatest in games of conflicting interest, in which learning good compromises is typi-
cally the most difficult. This can be traced to M-Qubed’s ability to make good compromises
with a wide-range of associates by balancing its cautious, best-response, and optimistic
learning biases.

M-Qubed also gained the highest population share in random common- and conflicting-
interest evolutionary tournaments (Fig. 8(a) and 8(b), respectively). In common-interest
games, the ending population consisted of agents employing M-Qubed and the satisficing
learning algorithm (S-alg). The population eventually converged so that approximately 72%
of the population used M-Qubed and 28% of the population used the S-alg. In games of
conflicting interest, M-Qubed quickly gained and held the entire population share.

The results of the random constant-sum evolutionary tournaments show a surprising and
interesting trend (Fig. 8(c)). While M-Qubed initially began to dominate the population,
its population share began to decrease after about 100 generations, eventually fading to
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Fig. 8 Population evolution in random games with between two and five actions.

zero by about 1000 generations. M-Qubed was initially successful in this tournament since
its use of recurrent state allowed it to model and exploit insecure algorithms. However,
when paired with some of the more successful algorithms in these games (such as GIGA
and GIGA-WoLF), M-Qubed experienced a small constant lost, bounded by Ltol

i , over the
duration of the repeated game. Thus, as the insecure algorithms became extinct and M-
Qubed associated more frequently with these successful algorithms, M-Qubed’s population
share slowly dissolved.

These results stand in contrast to those observed in the games Matching pennies and
Rock, paper, scissors, in which M-Qubed maintained a significant share of the population
after 1000 generations (Table 5). The difference can be traced to M-Qubed’s behavior as the
number of actions in the game increases. Since M-Qubed increased its risk tolerance Ltol

i
as the number of actions in the game increased in order to more effectively coordinate and
cooperate (Table 7), it experienced greater loss against GIGA and GIGA-WoLF in games
with more actions. This resulted in faster deterioration to its population share in the random
constant-sum games. In two-action random constant-sum games, M-Qubed maintained a
higher share of the population after 1000 generations (Fig. 8(d)).

These results suggest two things. First, the need to balance cautious, best-response, and
optimistic learning biases comes at a cost. No algorithm is “optimal” in all situations (Ax-
elrod 1984). When the competitive nature of the game is known, the way that the cautious,
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best-response, and optimistic learning biases are balanced should be adjusted. For example,
in constant-sum games, it would have been desirable for M-Qubed to use a smaller risk tol-
erance Ltol

i to balance its learning biases, while in common- and conflicting-interest games,
it is typically best for M-Qubed to use a high risk tolerance.

Second, while M-Qubed is successful in repeated general-sum games with two agents
and only a few actions, it does not necessarily scale well to games with more players and
actions. Thus, identifying ways to effectively scale reinforcement learning algorithms for
large multi-agent environments is an important topic of future work. The results of this
paper suggest that these future algorithms should encode and balance competing learning
biases such as caution, best-response, and optimism.

5.3 What makes M-Qubed successful?

To better understand which of M-Qubed’s characteristics cause it to learn successful com-
promises when associating with other learners, we compared M-Qubed with the five vari-
ants described in Section 4.3 in the random evolutionary tournaments. To do this, we ran
separate evolutionary tournaments replacing M-Qubed with each of these variants. We then
compared M-Qubed’s average population share over 1000 generations with the average pop-
ulation share that each of the variants would have held. We also compare these average pop-
ulation shares with those of CoLF, which differs from Sarsa with optimistic learning bias
only in that it uses two constant learning rates to update its Q-values.

Fig. 9 shows that the optimistic learning bias had a large impact on M-Qubed’s perfor-
mance. If M-Qubed had not encoded an optimistic learning bias, its average population share
would have been near zero in common- and conflicting-interest evolutionary tournaments
(Figs. 9(a) and 9(b), respectively). This result indicates that optimism is a key component
of coordination and compromise when associating with other learners in repeated games.
On the other hand, the optimistic learning bias negatively affected M-Qubed’s performance
in constant-sum games (Fig. 9(c)), since being open to compromise exposed M-Qubed to
additional risk. However, M-Qubed was still one of the more successful algorithms in these
constant-sum games.

Fig. 9 also shows that the cautious learning bias had a small effect on M-Qubed’s per-
formance in constant-sum games, as the absence of this learning bias cut M-Qubed’s aver-
age population share in half in constant-sum games. However, the effect is not as dramatic
as might be expected. In fact, a decreased learning rate (i.e., Sarsa with optimistic learning
bias) nearly compensated for not encoding the maximin strategy. Thus, while an all-knowing
seer agent is able to continually exploit an M-Qubed variant that does not encode the max-
imin strategy (Fig. 1), learning algorithms with knowledge restrictions similar to M-Qubed
are often unable to exploit a reinforcement learning algorithm that does not encode the max-
imin strategy.

The best-response learning bias employed by M-Qubed is also an important part of M-
Qubed’s success when it associates with many kinds of learning algorithms. This is demon-
strated by S-alg and CoLF, both of which encode similar optimistic learning biases. How-
ever, while both algorithms performed reasonably well in the tournaments, they were not
as robust as M-Qubed. Given the S-alg’s simple representation, it does not encode a best-
response learning rule. As such, it is not as successful as M-Qubed in learning good compro-
mises when paired with algorithms that are not apt to coordinate and cooperate. Likewise,
the variable learning rate employed by CoLF, which is selected based on whether CoLF’s
payoffs change suddenly or not, causes its Q-values to be less likely to represent its true
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Fig. 9 Average population share over 1000 generations in (a) random common-interest games, (b) random
games of conflicting interest, and (c) random constant-sum games.

payoffs. This, diminishes CoLF’s ability to play a best response, and results in near-zero
average population shares in all three types of games (Fig. 9). Thus, when associating with
many kinds of learning algorithms, the best-response learning bias has a large impact on an
algorithms effectiveness.

Together these results suggest that encoding and balancing cautious, best-response, and
optimistic learning biases is an effective method for learning good compromises in repeated
general-sum games played with learning associates.
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6 Conclusions and Future Work

In this paper, we have addressed the challenge of learning good compromises in repeated
general-sum games in which an agent can observe the actions but not the payoffs of its
associates. We have advocated that a successful learning algorithm for these games should
have three properties of compromise. First, an algorithm should be secure, meaning that its
average payoffs should meet or exceed its maximin value in the limit. Second, an algorithm
should learn to coordinate its behavior in common-interest games so that it achieves its
highest possible payoff. Third, in games of conflicting interest, an algorithm should learn to
cooperate, meaning that its payoffs should approach or exceed its NBS value.

When the payoffs of associates are unknown, no algorithm in the literature satisfies all
three of these properties. M-Qubed, the algorithm discussed and analyzed in this paper,
encodes and balances cautious, optimistic, and best-response learning biases to take a step
in this direction. M-Qubed is provably secure, regardless of the payoff structure of the game
and the behavior of its associates. Furthermore, our empirical results show that M-Qubed
achieves high degrees of coordination and cooperation when associating with itself and other
learners in a wide-range of two-player repeated general-sum games. These attributes make
M-Qubed a robust learning algorithm for these games, as attested by its robust performance
in a series of round-robin and evolutionary tournaments involving 17 learning algorithms
from the literature.

M-Qubed’s robust learning behavior in these games requires the ability to encode and
balance cautious, best-response, and optimistic learning biases. Each of these learning bi-
ases has been proposed and analyzed individually in the multi-agent literature over the last
couple of decade. While individually useful in particular contexts, M-Qubed demonstrates
that an effective combination of these learning biases allows an agent to overcome the con-
flict between competition and cooperation across the range of general-sum games played
with a variety of (unknown) learning associates.

The empirical results presented in this paper are limited to two-player repeated matrix
games with particular knowledge requirements and restrictions. Future work should explore
how cautious, best-response, and optimistic learning biases should be encoded and balanced
in other situations, including stochastic games and games with more players.
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Appendices

A Determining the Learning Rate α

To help ensure a proper balance among its best-response, cautious, and optimistic learning

biases, M-Qubed should set its learning rate α so that maxa Qi(s,a)→ vMM
i

1−γ
as Laccum

i (t)→
Ltol

i . While the way that Q-values change over time is also dependent on the actual payoffs
received in the game, α can be estimated using three assumptions.

First, since an agent plays its maximin action πMM
i in the cautious strategy rule only

when its average payoff per stage (vavg
i (t) = 1

t ∑
t
τ=1 rτ

i ) is less than its maximin value vMM
i ,

we assume rt
i = vMM

i −ζ , where ζ > 0 is some small constant, for all t. Given this assump-
tion and the requirement that M-Qubed’s highest payoff is one and its lowest payoff is zero,
we can reduce each payoff in M-Qubed’s payoff matrix by vMM

i −ζ . In so doing, vMM
i = ζ

and the highest payoff is 1− vMM
i + ζ . Second, we assume that all state-action pairs are

visited uniformly. Third, we assume that V t(st+1)≈ Qt(st ,a).
While these assumptions are likely to be violated, they provide a rough estimate for

determining how Q-estimates will change over time. Specifically, given these assumptions
and Eq. 6, we have that:

Qt(s,a) = Q0(s,a)(1−α +αγ)
t

|Ai ||H(ω)| . (17)

We are interested in finding α such that Qt(s,a) falls to the discounted sum of the max-
imin value, which is ζ

1−γ
, when Laccum

i (t)= Ltol
i . Since Laccum

i (t)= ζ t under our assumptions,

we have that t = Ltol
i
ζ

and Q0(s,a) = 1−vMM
i +ζ

1−γ
. Plugging these values into Eq. 17 and solving

for α , we find that α should be set as follows:

α =
1−
(

ζ

1−vMM
i +ζ

) ζ |Ai ||H(ω)|
Ltol

i

1− γ
. (18)
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B Algorithmic Parameters

Unless specifically stated otherwise, the parameters used by the various algorithms in the
empirical studies reported in this paper are given in Table 7. Given the importance of pa-
rameter settings on the performance of the algorithms, we describe our justifications for the
various parameter settings that we selected. We first discuss M-Qubed’s parameters, fol-
lowed by a discussion of the parameters used for the other algorithms.

B.1 M-Qubed’s Parameters

The parameters used by M-Qubed are as follows:

1. γ – The discount factor, which determines the weight of future rewards on M-Qubed’s
Q-values. γ should be set high in repeated games to better approximate long-term future
payoffs. For the experiments reported in this paper, we selected γ = 0.95 since it has em-
pirically been shown to work well, though other high values are also effective (Crandall
and Goodrich 2005).

2. η – The exploration rate, which determines how often M-Qubed acts randomly when it
believes that further exploration could be profitable. We use a relatively low exploration
rate η that decays over time. This worked well in practice, though other exploration
rates can be used with success.

3. ω – The number of previous joint actions used to define M-Qubed’s state. We used ω = 1
since it is sufficient for most games, and allows M-Qubed to learn more quickly. How-
ever, increasing ω can increase M-Qubed’s performance in some games substantially
(Fig. 4).

4. Ltol
i – M-Qubed’s loss tolerance, which defines how quickly M-Qubed triggers to its

cautious learning bias. Higher values of Ltol
i cause M-Qubed to switch to its cautious

learning bias more slowly when it is being exploited. We made Ltol
i a function of the size

of the agent’s state and action spaces to allow M-Qubed sufficient time to learn before it
switched to its cautious learning bias.

5. α – The learning rate, which defines how quickly M-Qubed’s Q-values change when
exposed to new experiences. As outlined in Appendix A, the learning rate is determined
by the parameters ζ and Ltol

i . As indicated in Appendix A, ζ should be a small positive
constant. For the experiments reported in this paper, we randomly set ζ in the range
[0.05,0.1] in each game. This range worked well in practice, but future work could
better explore its affect on M-Qubed’s performance.

B.2 Parameters Chosen for Other Algorithms

We used two guiding principles to set the parameter values shown in Table 7. First, where
possible, we used the parameter settings derived and used by the authors of the algorithms
in the published works. This was done to preserve the basic philosophies advocated in the
literature and to draw on the expertise of the creators of these algorithms.

Second, the parameters were set so that each algorithms’ performance converged long
before the completion of a repeated game (300,000 stages). Fig. 10 depicts the average
learning speed of each of the 17 algorithms in self play in two- and five-action random
general-sum matrix games. The figure shows that the performance of each of the algorithms
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Table 7 Algorithms and their parameter values, unless stated otherwise. κ t(s) is the number of times state s
has been visited up to time t, and κ t(s,a) is the number of times that action a has been taken in state s up to
time t.

Algorithm Name Parameters
M-Qubed γ = 0.95, η(t) = (0.04)·1000

1000+maxs κt (s) , ω = 1, Ltol
i = 500 · |Ai| · |H(ω)|,

α set as in Eq. 18 with ζ ∈ [0.05,0.1]
Sarsa (Rummery and Niranjan
1994)

α = 1.0
10.0+ κt (s,a)

100

, γ = 0.95, ε-greedy w/ ε = (0.04)·1000
1000+maxs κt (s) ;

Q(s,a) ∈ [0, 1
1−γ

] ∀(s,a), state is the previous joint action (ω = 1)

CoLF (de Cote et al. 2006) Q(s,a) = rmax
i

1−γ
for all (s,a), αNS = 0.1, αS = 4∗αS, γ = 0.95, λ = 0.1

state is the previous joint action (ω = 1)
ε-greedy w/ ε = max(0,0.2−0.00006∗ t);

GIGA-WoLF (Bowling 2005) ηi = 1√
t

GIGA (Zinkevich 2003) ηi = 1√
t

PHC (Bowling and Veloso
2002)

α = 1
100+ t

10000
, πMM = 1

20000+t , Q(s,a) = 0 for all (s,a)

ε-greedy w/ 5% exploration
stateless

WoLF-PHC (Bowling and
Veloso 2002)

α = 1
100+ t

10000
, πMM = πMM

w = 1
20000+t , πMM

l = 4πMM
w , Q(s,a) = 0

for all (s,a), ε-greedy w/ 5% exploration
We used πMM

l = 4πMM
w for increased learning speed.

WMA or Hedge (Freund and
Schapire 1995)

βi = 0.999

Exp3 Auer et al. (1995) ηi = λ

|Ai |
(|Ai| is the number of actions for player i), gi = 300000

WPL Abdallah and Lesser
(2008)

ηi = 0.002, ε = 0.01; with knowledge of the agent’s payoff matrix,
the gradient is determined by the payoff matrix rather than Q-values

FP – Fictitious Play (Fuden-
berg and Levine 1998)

κ0(a) = 0 for all a, no exploration

sFP – Stochastic Fictitious Play
(Fudenberg and Levine 1998)

κ0(a) = 0 for all a. Boltzmann exploration with temperature param-
eter τ = 1

t
100

AP – Adaptive Play (Young
1993)

Uses 100 of the previous 200 actions to create the opponent model

CJAL Banerjee and Sen (2007) N = 400, ε = 0
Hyper-Q (Tesauro 2004) Hyper-Q/Bayes formulation, with µ = 0.005, and a uniform prior.

Belief of opponent strategy formulated using previous previous 1
µ

ac-
tions. Q(x,y) initialized to the expected payoff of playing strategy
x against y. Discretization (for types): N = 20 for 2-action games,
N = 10 for 3-action games (per dimension), α = 1

100+ t
10000

, ε-greedy

w/ 1% exploration
NSCP (Weinberg and Rosen-
schein 2004)

α = 1
100+ t

10000
, β = 0.95, Q(s,a1,a2) = 0 for all (s,a1,a2)

ε-greedy exploration w/ 5% exploration
S-alg (Stimpson and Goodrich
2003)

λ = 0.99

converged long before 300,000 stages were completed. None of the algorithms increased its
performance substantially after the time-windows shown in the figures.

While the performance of each algorithm plateaued long before the end of the repeated
game, Fig. 10 shows that the algorithms did learn at different rates and reach different per-
formance levels. This introduces the question of whether or not algorithms that converged
faster performed better than algorithms that converged slower, or vice-versa. We conducted
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Fig. 10 Average payoffs of the various algorithms in self-play in (left) 50 two-action general-sum games and
(right) 50 five-action general-sum games. After the time-window shown in the figures, none of the algorithms
increased their performance substantially.

a Pearson correlation test to determine whether learning speed affected the average perfor-
mance of the algorithms in round-robin tournaments. There was no statistically significant
(α = 0.05) correlation between convergence speed and average performance in the random
conflicting-interest and random constant-sum games. However, there was a statistically sig-
nificant trend in the random common-interest games (r = −0.707, N = 17, p = 0.002), as
faster algorithms tended to outperform slower algorithms in these games.

We note that M-Qubed had the ninth fastest convergence speed in the random general-
sum matrix games (Fig. 10).

C Evolutionary Tournaments

Formally, let Ω be the set of algorithms in the population, and let Pτ(o) be the percentage of
the population employing algorithm o ∈Ω in generation τ . Also let, S(oi,o j) be the average
payoff achieved by algorithm oi ∈ Ω when playing o j ∈ Ω in a 300,000-stage repeated
game. Then, an evolutionary tournament proceeds as follows:

1. For all o ∈Ω , set P1(o) = 1
|Ω | , and set τ = 1.

2. While (τ ≤ 1000)
3. For all o ∈Ω , uτ(o) = ∑o′∈Ω Pτ(o′)S(o,o′)
4. For all o ∈Ω , Pτ+1(o) = Pτ(o) uτ (o)

∑o′∈Ω
uτ (o′)

5. τ = τ +1.


